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Abstract 

 

Gas-phase activation and dissociation studies of biomolecules, proteins and their non-covalent complexes using X-rays hold great promise 

for revealing new insights into the structure and function of biological samples. This is due to the unique properties of X-ray molecular 

interactions, such as site-specific and rapid ionization. In this perspective, we report and discuss the promise of first proof-of-principle studies 

of X-ray-induced dissociation of native biological samples ranging from small 17 kDa monomeric proteins up to large 808 kDa non-covalent 

protein assemblies conducted at a synchrotron (PETRA III) and a free-electron laser (FLASH2). A commercially available quadrupole time-of-

flight mass spectrometer (Q-ToF2, Micromass/Waters), modified for high-mass analysis by MS Vision, was further adapted for integration 

with the open ports at the corresponding beamlines. The protein complexes were transferred natively into the gas phase via nano-

electrospray ionization and subsequently probed by extreme ultraviolet (FLASH2) or soft X-ray (PETRA III) radiation, in either their folded 

state or following collision-induced activation in the gas phase. Depending on the size of the biomolecule and the activation method, protein 

fragmentation, dissociation, or enhanced ionization were observed. Additionally, an extension of the setup by ion mobility is described, which 

can serve as a powerful tool for structural separation of biomolecules prior to X-ray probing. The first experimental results are discussed in 

the broader context of current and upcoming X-ray sources, highlighting their potential for advancing structural biology in the future. 

 

 

Introduction 

 
Electrospray ionization (ESI) of proteins and their complexes in 
combination with mass spectrometry (MS) is nowadays a standard 
technique in biophysics and structural biology due to its ease of 

application and its versatility of experiments. MS has been particularly 
successful in probing two fundamental aspects of proteins: their 
structure and sequence. 
Structural analysis in the form of conformational studies of 
biomolecules has been largely enabled by advances in native MS,1 
which gently transfers proteins and their complexes from native-like 
aqueous solutions into the gas phase under close to native conditions 
(usually by nano-ESI2). This has been proven numerous times 
indirectly with ion mobility (IM) measurements,3 free-electron laser 
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(FEL) spectroscopy,4 and through direct observation of single 
molecules via electron microscopy imaging subsequent to soft-landing 
of natively spayed proteins.5 

Tandem MS, where ions are isolated by their mass-to-charge 
ratio (m/z) and analyzed after being subjected to fragmentation, is 
extremely powerful for both sequence and structure analysis. 
Laboratory-based fragmentation methods include collision-induced 
dissociation (CID), electron-based dissociation (ExD),6 surface-induced 
dissociation (SID),7 or infrared/ultraviolet photodissociation 
(IRMPD/UVPD).8,9 Each method of fragmentation has its own 
strengths and weaknesses. CID and IRMPD require cycles of slow 
heating of the sample by collisions with background gas and 
intramolecular vibrational redistribution (IVR). UVPD/ExD are faster 
fragmentation methods and can therefore be more sensitive to the 
initial conformation of the samples.10  

Similarly, X-ray excitation induced fragmentation of proteins may 
offer advantages such as site specificity and speed. A single absorbed 
photon is usually followed by an ultrafast Auger–Meitner decay (~fs), 
resulting in rapid energy deposition and potentially structure-
dependent fragmentation. Studies of the physical process of the 
excitation of biomolecules by X-rays, such as peptides and proteins, 
have been conducted previously.11–14 The mechanism of relaxation 
and the fragmentation pathways are heavily dependent on the size of 
the molecule. For small molecules, ejection of hydrogens or protons 
and small fragments are dominant. For smaller peptides, core-
electron photoionization and subsequent relaxation processes (both 
the emission of photoelectrons and Auger–Meitner electrons) are 
followed by fragmentation pathways that produce small m/z 
fragments.11 For larger proteins, IVR of energy can outcompete the 
fragmentation pathways, reducing the number of fragments produced 

after ionization. 
Using X-rays for the study of protein complexes may provide 

unique and complementary information that is not present in other 
structural-biology techniques. However, the interaction of large 
gaseous protein complexes, made feasible by native MS, with X-rays 
is yet not well understood. In order to take advantage of the rapid rate 
of relaxation by fragmentation as a tool to study the conformation of 
large biomolecules, it is necessary to understand the underlying 
physics of the process.  

Moreover, X-ray fragmentation may also be a complementary 
technique in (native) top-down (TD) MS, where protein sequence 
coverage can be achieved via fragmentation of the whole protein in 
the mass spectrometer.15,16 The fast rate and rapid energy deposition 
after the absorption of an X-ray photon is of particular interest in 
TDMS, as X-ray photodissociation may become a complementary 
method for better protein sequence coverage and survival of post-
translational modification. In addition, X-ray fragmentation can be 
combined with other established gas-phase techniques such as ion-
mobility spectrometry (IMS). In combination with simulations, IM-
tandem MS can be a powerful tool for structural analysis of protein 
complexes.17,18  

Furthermore, native MS can be used to study radiation damage 
in biomolecules in the gas phase, focusing on secondary ionization 
events from photo- and Auger–Meitner electrons—similar to those 
occurring in X-ray radiation-induced damage to biological tissues.19 A 
better understanding of the effects of X-rays on biomolecules, 
including proteins, is crucial in the biomedical field. In this isolated gas-
phase environment, native MS enables the study of X-ray effects on 
proteins without interference from environmental and surrounding 
factors. 

Fig. 1 Schematic of the experimental setup. Ions are generated from solution in a nano-ESI source into the gas-phase 

and transported through a high-mass modified Q-ToF mass spectrometer to a microchannel plate (MCP) detector. As 

they fly past, they intersect perpendicularly with X-ray / EUV photons in a radially confining hexapole between the 

collision cell and the ToF analyzer. An optical viewport and a Ce:YAG screen were used to aid the alignment of the 

setup with respect to the photon beam. Magenta labels show the optional ion mobility device used for 

conformational separation and the collision cell (CC) exit lens used to temporarily trap ions as described in the main 

text. The inset illustrates the photon delivery structure of both the quasi-continuous PETRA III synchrotron (equally 

distributed pulses with 16 ns or 192 ns microbunch spacing when operated at 62.5 MHz and 5.2 MHz, respectively) 

and the unevenly pulsed FLASH2 free-electron laser used for the reported experiments.   
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Here, we present the first proof-of-principle experiments of our 
campaign to study the interaction of X-rays with gaseous proteins and 
their non-covalent complexes of various sizes obtained by native MS. 
For our experiments, a commercially available high-mass Q-ToF mass 
spectrometer further modified for X-ray experiments was installed at 
multiple open-port beamlines at DESY in Hamburg, Germany. We 
focus on data collected from two beamlines, the synchrotron 
beamline P04 at PETRA III,20 as well as the FL24 beamline of the free-
electron laser FLASH221. The experimental MS setup is capable of 
measuring proteins and protein complexes ranging from small 
peptides up to MDa virus-like particles (VLPs) with a diameter of more 
than ~30-40 nm.22–24 In addition to a quadrupole mass filter (QMF), 
which was used to select molecular ions of a specific m/z in the gas 
phase before the X-ray interaction region, we demonstrate the use of 
CID and IM prior to probing the proteins by X-rays for pre-activation 
and conformational separation, respectively. The presented results 
are discussed in the context of future potential experiments and their 
current limitations.  
 

Instrumental setup and experimental methods 
 
Fig. 1 shows a schematic drawing of an X-ray coupled version of the 
quadrupole time-of-flight (Q-ToF2, Micromass/ MS Vision) 
spectrometer modified for high mass.25 Modifications beyond high-
m/z capability include open-port access via a DN40 ConFlat (CF) 
vacuum flange at the transfer hexapole ion guide behind the collision 
cell for coupling to P0420 at the PETRA III synchrotron or FL24 at the 
FLASH2 FEL.26,27 The full details of the modifications for optical access 
are described in the Supplementary information. 

For the experimental sequence, samples are transferred into the 
gas phase using ESI or nano-ESI. All protein and peptide samples or 
other materials are described in the Supplementary information. 
Experiments were performed in positive ion mode. Hence, ESI 
produces positively charged protein ions that enter the instrument. 
Afterwards, the ions were selected based on their m/z using the QMF 
of the Q-ToF. Depending on the pressure in, and the voltage gradient 
across the collision cell, samples were either merely thermalized and 
transported through the collision cell, which is aided by gentle 
collisional cooling and beam focusing, or vibrationally activated in the 
gas phase via energetic collisions with argon, before they were 
transported to the transfer hexapole ion guide and probed 
perpendicularly by the X-rays. The X-ray beam was typically much 
smaller in diameter—at most one-tenth the size of the ion beam—
allowing only a few percent of the direct ion beam to be probed by the 
X-rays. Ions (including the products) were then transferred to the 
pusher region, mass analyzed in the ToF and detected upon hitting a 
microchannel plate. Additional instrument components and 
measurement steps for pulsed operation were required at FLASH2 due 
to the long time period between the photon bunches, see the 
Supplementary information for further details. 

For the ion-mobility X-ray experiments only, an additional 
vacuum chamber containing a resistive glass drift tube was installed in 
front of the source hexapole of the Q-ToF. The instrument components 
were obtained from MS Vision and the design is based on the MoQToF 
instrument by Barran and co-workers.28,29

 

 
Results and discussion  
 
Fragmentation 

Protein complex fragmentation experiments were performed 
at two different X-ray light sources, each corresponding to a distinct 
ionization regime. At the P04 beamline of PETRA III, protein 
complexes were probed via single-photon 1s core-ionization at a 
photon energy of 595 eV using a pink (polychromatic) beam. In 
contrast, at the FL24 beamline of FLASH2, protein samples were 
probed via multi-photon inner-shell ionization at a photon energy of 
163 eV and a pulse energy of 140 µJ, with a focus diameter (full width 

at half maximum) of 100 µm. Here, the absolute number of absorbed 
photons is exceedingly difficult to estimate due to the complexity of 
the underlying ionization processes. For example, in the case of 
haemoglobin (Hb, Fig. 2 d), these FEL parameters suggest the 
absorption of up to a couple hundred photons per FEL pulse. This 
estimate is based on the independent atom model, and neglects, e.g. 
changes in absorption cross section due to the molecular orbitals, or 
the increased ionization of the protein complex. In turn each photo-
electron creates up to 7 secondary electrons, due to electron impact 
ionization, within a volume with a radii of around 2.5 nm.30 The 
resulting number necessitates a very high state of ionization. 

Figure 2 shows a selection of protein complex mass spectra 
recorded with the instrumental setup at the two facilities. The 

Fig. 2 Mass spectra of protein complexes in the presence 
(on, yellow or blue) and absence (off, black) of X-ray 
excitation. Spectra in panels a-c were measured at the 
PETRA III P04 beamline. Spectra in panel a show non-
collisionally activated GroEL. In panels b and c, mass 
spectra of non-collisionally activated and collisionally 
activated disulfide-stabilized human leukocyte antigen 
(ds-HLA), respectively, are depicted. Spectra of 
collisionally activated tetrameric haemoglobin (Hb) in 
panel d were measured at the FL24 beamline of the 
FLASH2 FEL. 
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spectra compare the protein complexes in the presence (on) and 
absence (off, black) of X-ray irradiation. Spectra in Figs. 2a-c were 
measured at the P04 beamline (yellow), the spectra in Fig. 2d were 
measured at the FLASH2 facility (blue). Additionally in Fig. 2a and 2b, 
non-preactivated, native-like protein complexes, of the bacterial 
chaperone GroEL (≈ 808 kDa, 14-mer) and disulfide-stabilized human 
leukocyte antigen (ds-HLA, ≈ 44 kDa, heterodimer comprising α1-3 
heavy chain and β2-microglobulin) are shown.31 In contrast, Fig. 2c 
and 2d depict spectra of collisionally pre-activated ds-HLA and 
human haemoglobin (Hb, ≈ 64 kDa, heterotetramer comprising two 
α and two β subunits with or without a haem cofactor - holo-/apo-, 
respectively) protein samples, i.e., non-native and partially 
fragmented protein complexes. Labelled peaks show the assigned, 
highlighted fragments as well as the corresponding charge states.  

Generally, the measured X-ray induced mass spectra are 
dominated by the direct ion beam, which can be attributed to the 
previously mentioned mismatch in ion and X-ray beam diameters, as 
well as the low probability of X-ray interaction as the ions were 
irradiated on-the-flight without extended ion trapping. The 
collisionally pre-activated samples in Fig. 2c-d exhibit a much higher 
ion yield, as evidenced by the significantly lower magnification 
factors needed to visualize the X-ray-induced fragmentation 
channels. This can be qualitatively explained by the higher internal 
vibrational energy of the samples due to CID, which results in a lower 
energy threshold required for fragmentation. Moreover, 
contribution of a difference in secondary ionization events due to a 
change of conformation cannot be excluded either. 

Fig. 2a shows the quadrupole-filtered and non-activated 
(native-like folded) GroEL. In the ‘X-ray off’ spectrum (black), the 
precursor ions of the 67+ charge state dominate the spectrum. Small 
amounts of 66+ and 69+ ions are present due to charge stripping of 
the complex accompanied by additional desolvation required after 
isolation in the QMF and/or incomplete mass filtering by the 
quadrupole itself. But their relative intensity is below 1% compared 
to 67+ and negligible for the X-ray interaction. Upon X-ray irradiation, 
the 67+ charge state of the very large oligomer did not fragment, but 
multiple ionization events occurred, which can be explained by 
photoelectron and Auger–Meitner electron relaxation mechanisms. 
The lack of fragmentation can be attributed to the size of GroEL, as 
larger complexes have more vibrational degrees of freedom to 
absorb the excitation energy, which is in line with studies conducted 
by Schlathölter and co-workers.11 

Fig. 2b shows a similar initial situation for the non-activated 
heterodimer ds-HLA. The 13+ charge state is quadrupole-filtered and 
dominates the spectrum. In contrast to GroEL, the protein complex 
also shows a relatively minor peak for secondary ionization to 14+ 
but in addition primarily undergoes fragmentation into its ɑ1-3 and β2 
subunits, similar to the products in an SID experiment.32 The summed 
final charge states of the products can be estimated based on the 
relative peak intensities of the product ion peaks, which match  ions 
with 13+, 14+, and 15+ charge states. 

In the case of QMF and collisionally pre-activated ds-HLA (Fig. 
2 c), the situation is more complex. The spectrum is dominated by 
the ɑ1-3 10+ charge state, a fragment generated during the CID 
process. The initial quadrupole-filtered 13+ charge state has an 
intensity comparable to that of other ions produced through CID 
fragmentation. Thus, the X-rays interact with multiple ionic species 
at once. A general increase of the already populated fragmentation 
channels is visible, and new fragmentation channels could be hidden 
in the significantly increased ion background due to the CID process. 
However, the ion signal of the β2 3+, 4+, 5+, and 6+ subunits are 
clearly enhanced upon X-ray interaction, suggesting an origin in the 
ds-HLA 13+ ions, as these subunits cannot come from the ɑ1-3 10+ 
charge state. This pattern resembles that in Fig. 2b but occurs with 
significantly higher fragmentation efficiency. It can be explained by 
the increased internal energy of the protein complex due to the 
collisional activation prior to X-ray exposure. 

Fig. 2d shows mass spectra of collisionally activated and 
quadrupole-filtered Hb 16+ proteins. In contrast to Fig. 2c, the CID 
spectrum is dominated by a single species. CID fragments include 
both holo- (haem bound) and apo- (without haem) forms of 
monomers of both subunits, with intensities ranging from 1 to 20% 
of the main peak. Similar to Fig. 2c, the ionization due to the FEL 
primarily enhances existing CID fragmentation channels at a 
comparable high yield, albeit with slightly different branching ratios. 
This similarity suggests that the detected fragments from FEL 
ionization primarily originated from protein complexes that were 
probed at the edge of the FEL focus and ionized by only a few XUV 
photons. As mentioned above, for Hb, a first approximation would 
estimate the absorption of a couple hundred photons in the focus of 
the FEL. Apparently, the chosen experimental setup is not optimal 
for this type of FEL experiment. The high number of absorbed 
photons likely induce a strong Coulomb explosion of the protein 
sample, generating small ionic fragments that are too fast to be 
retained and effectively transferred by the transfer hexapole with 
confining rf-frequencies primarily optimized for larger species. This, 
together with the geometric distance between the interaction zone 
and the ToF entrance, along with the ion spectrometer’s lower 
detection limit of 150 m/z due to overwhelming electronic signal 
from the pusher, prevents the detection of these fragments. 
 
Addition of mobility separation 

 
Gas-phase structural techniques, such as IMS, are well established and 
can significantly enhance X-ray protein studies. By separating 
conformations, these techniques offer additional information beyond 
what is obtainable from X-ray fragmentation alone. Furthermore, 
when combined with simulations, the measured collision cross 
sections offer new insights for the interpretation of the resulting 
fragments. 
Fig. 3 shows the first proof-of-principle results from IM experiments 
conducted with X-rays using synchrotron radiation. To enable these 

Fig. 3 Single photon X-ray excitation of the helix-turn-
helix peptide (HTH) sample. The upper panel contains 
the mass spectrum of the peptide after irradiation. The 
inset shows the arrival time distributions of the m/z 
representing HTH (m/z 1321) and the second most 
prominent peak in the mass spectrum from the sample 
(m/z 1211.5). The lower panel contains arrival time 
distributions of two fragment ions with and without 
irradiation. 
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measurements, a custom-built IM drift tube33 was installed on the Q-
ToF2 as shown in Fig. 3. The sample was a helix-turn-helix peptide 
(HTH, see Supplementary information for the sequence), similar to a 
study by Jarrold and co-workers34. The polypeptide sample was first 
subjected to IM, then QMF for the doubly ionized HTH peak at 1321 
m/z before being probed by the X-rays.  

As seen in the spectrum in Fig. 3 and indicated by the 
magnification factor, the filtering was less effective than in Fig. 2, 
resulting in a very low signal-to-noise ratio for this experiment. 
However, the ion drift time could be used to discriminate between 
different species. The mass spectrum of the peptide sample shows 
incomplete synthesis containing multiple shorter peptides. In the top 
panel of Fig. 3, 1321 is the expected m/z of the HTH peptide while 
1211.5 corresponds to the m/z of the peptide fragment missing the 
last two residues. Their arrival time distribution is shown in the inset. 
Their drift times are different enough that fragments produced after 
irradiation from either the full peptide or the impurity can be 
distinguished; the ion-mobility separation is performed before the Q-
ToF analysis, and before fragmentation. In the bottom panel, the 
arrival time distributions of two potential fragment ions with m/z 253 
and 1165 with and without X-ray excitation are depicted. The blue and 
green shaded areas mark the arrival time peaks of the full and partial 
peptide of the inset in the top panel respectively.  

The IM module is being further optimized, including the 
resolution of the measurements. Nonetheless, the distributions show 
the ability of distinguishing fragment ions as either being from the 
peptide or from impurities. As the instrument is optimized, selection 
of specific protein conformations before fragmentation will be 
feasible. This will allow the differentiation of fragmentation pathways 
of multiple conformers, and provide structural and sequence 
information as reported from other IMS combined with 
photodissociation techniques.35–37 
 

Summary and outlook 
 

In these first experiments of the X-ray excitation of gaseous protein 
and protein complex ions, we have demonstrated the utility of native 
MS as a delivery system for X-ray excitation of isolated proteins, 
especially larger complexes in the range of 50 kDa to 1 MDa.  

The fragmentation pattern and pathway after irradiation are 
similar to the trend shown in previous studies of peptides and smaller 
proteins, with additional pathways that are not possible for 
monomeric proteins. In the presence of only X-ray irradiation, smaller 
protein complexes proceed in dissociation by breaking off non-
covalent interactions after induced ionization, resulting in formation 
of protein subunits and ligands. For very large complexes, ionization 
by simple electron ejection and subsequent Auger–Meitner decay 
dominate. When comparing, the fragment abundance from X-ray 
excitation is lower than in CID, although this is possibly due to low 
interaction probability of photons with complexes. In the present 
examples, X-ray excitation of already collisionally activated complexes 
generally enhances the CID fragmentation channels. These 
observations are in line with the model of vibration redistribution of 
energy after ejection of electrons;11 in which larger protein complexes 
have more vibrational modes to distribute this energy, unless these 
are already diminished by collisional activation. The addition of IMS 
before X-ray fragmentation is feasible and can be incorporated in the 
future for the study of large protein complexes. 

From these initial experiments, we have recognized some 
limitations of the current instrumental setup and method. The major 
issue is the low signal-to-noise ratio. To increase this, we identified the 
source of the background ion signal as problematic with collisional pre-
activation. That being said, QMF without pre-activation results in very 
low ion background, allowing high sensitivity for the low abundant 
products. Such an approach is suited when the subject of interest is in 
fragmentation mechanisms and the corresponding irradiation induced 
ionization of non-covalent complexes. Thus, even with the current 

background, native MS X-ray experiments are useful for spectroscopic 
and radiation damage studies. 

For the increase in signal of the fragment ions, the issue is either 
low statistical probability of ion-photon interactions, or the difficulty 
in detecting product ions with high kinetic energy. As a side note, we 
had high dissociation yields for two samples in one campaign 
suggesting that higher efficiency could be achieved (Supplementary 
Fig. S1). Thus, improvement in the instrumental setup illustrated in Fig. 
1 must be considered. We note that the photons are transmitted 
through the rods of the last transfer-hexapole in front of the ToF 
analyzer, and ions are irradiated perpendicularly, 10 cm before they 
enter the ion transfer lens and pusher region of the spectrometer. The 
location was already chosen (mechanically) as close as possible to the 
entrance to the ToF region. It is unclear how many ions are lost in the 
hexapole after X-ray interaction due to high kinetic energies obtained 
during the relaxation process. This concern is especially important for 
experiments at FEL beamlines (Fig. 2d), where strong Coulomb 
explosions are expected. As such, FEL (or multiphoton) experiments 
would profit from an interaction point in the pusher region to extract 
the fragments as it could for instance be realized in the MS SPIDOC 
setup,29 or a gas-filled ion trap for cooling and trapping the 
fragments.11,38,39  

Another possibility to consider is that the number of interaction 
events between the photons and complexes was low. If the absorption 
cross section is high, and yet for example, the X-ray-ion beam overlap 
is low, then absorption rarely takes place. This can be improved by 
irradiation in parts of the instrument where the ions are in higher 
density, such as in an ion trap, or by instrumentation that allows co-
axial ion and photon beams for interaction.40–42  

Finally, in order for the fragmentation to proceed, the 
fragmentation after absorption of the X-ray photon is due to energy 
left behind by the ionization/decay processes. In larger protein 
complexes, the reabsorption of any photoelectrons or Auger–Meitner 
electrons and subsequent ionization are expected to be substantial.43    
Therefore, the energy of the ejected electron from the core is an 
important parameter to investigate. This can be measured by tuning 
the photon energy and conducting spectroscopy experiments to gain 
a deeper understanding of the relaxation pathways of proteins of 
different sizes, following X-ray photon absorption at different 
energies, which is a unique feature available for these wavelengths 
exclusively at synchrotrons and FELs.13 

In comparison to other MS fragmentation techniques,15 such as 
ExD or UVPD, not as many different pathways of fragmentation have 
appeared after X-ray irradiation. Two main strategies can be employed 
to use X-rays as a complementary technique for TDMS and 
spectroscopic experiments. The first approach involves investigating 
changes in X-ray photon energy, as mentioned above. The second 
involves MSn experiments, where various activation methods 
(including X-rays) are combined with additional filtering of individual 
species after CID or X-ray interaction. This could be achieved, for 
instance, using an Omnitrap platform44, which is particularly well-
suited for cycling and filtering reaction products.  

In terms of the future for employing native MS as a sample 
delivery system for X-ray experiments, the delivery of natively folded, 
mass and conformationally selected protein complexes is mature for 
fragmentation experiments, and moreover a wide variety of other X-
ray experiments of large biomolecules. The MS SPIDOC project was 
conceived to leverage the techniques known in mass spectrometry for 
background free, highly selective single particle imaging.29,33  

The absorption of large numbers of photons, which might have 
been a concern for a fragmentation experiment inside a modified 
commercial instrument, can become an advantage for ion imaging 
experiments such as velocity map imaging (VMI) or Coulomb explosion 
imaging of biological structures 45,46.  

Moreover, since experiments are often conducted at large light 
source facilities, additional lasers are available for pump-probe 
experiments. This enhances the potential of using native MS as a 
promising sample delivery method for studying structural changes in 
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biomolecules in real time. Recent work highlights the capability of 
native MS to look at complex kinetics in proteins and protein 
complexes.47–50  

With our initial experiments and studies, the combination of 
native MS and X-ray sources promises to become an invaluable tool in 
structural biology, biophysics and spectroscopy. 
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