Literature on Native MS using MS Vision modified instrumentation
Native mass spectrometry (native MS) literature using MS Vision instruments:
(When possible, the link provides direct access to the PDF file)
Reviews on Native Mass Spectrometry
- M. Barth, C. Schmidt, “Native mass spectrometry—A valuable tool in structural biology”, J Mass Spectrom. (2020); https://doi.org/10.1002/jms.4578
High Mass QTOF
- G.K. Shoemaker et al., “Norwalk Virus Assembly ans Stability Monitored by Mass Spectrometry”, Mol. Cell. Prot. (2010), p 1742-51, DOI: 10.1074/mcp.M900620-MCP200
- Uetrecht, C., Barbu, I., Shoemaker, G. et al., “Interrogating viral capsid assembly with ion mobility–mass spectrometry”, Nature Chem 3, 126–132 (2011). https://doi.org/10.1038/nchem.947
- J. Snijder et al., “Studying 18 MDa Virus Assemblies with Native Mass Spectrometry”, Angew. Comm. (2013)52:4020-23, DOI: 10.1002/anie.201210197
- C. Haupt et al., “Combining Chemical Cross-linking and Mass Spectrometry of Intact Protein Complexes to Study the Architecture of Multi-subunit Protein Assemblies”, J. Vis. Exp. (2017)129:e56747, DOI: 10.3791/56747
- J. Heidemann, B. Krichel, C. Uetrecht, “Native Massenspektrometrie für die Proteinstrukturanalytik”, Biospektrum (2018)24:164-167, DOI: 10.1007/s12268-018-0907-8
- R. Pogan et al., “Norovirus-like VP1 particles exhibit isolate dependent stability profiles”, J. Phys.: Condensed Matter (2018)30:064006, DOI: 10.1088/1361-648X/aaa43b
- I. Bernal et al., “Structural analysis of ligand-bound states of the Salmonella type III secretion system ATPase InvC”, Prot. Sci. (2019)28:1888-1901, DOI: 10.1002/pro.3704
- V.U. Weiss et al., “Virus-like particle size and molecular weight/mass determination applying gas-phaseelectrophoresis (native nES GEMMA)”, Anal. Bioanal. Chem. (2019)411:5951-62, DOI: 10.1007/s00216-019-01998-6
- R. Anjanappa et al., “Structures of peptide-free and partially loaded MHC class I molecules reveal mechanisms of peptide selections”, Nature Comm. (2020)11:1314, DOI: 10.1038/s41467-020-14862-4
- B. Krichel et al., “Processing of the SARS-CoV pp1a/ab nsp7-10 region”, Biochem J. (2020)477:1009-19, DOI: 10.1042/BCJ20200029
- S. Zoratto et al., “Molecular weight determination of adeno-associate virus serotype 8 virus-like particle either carrying or lacking genome via native nES gas-phase electrophoretic molecular mobility analysis and nESI QRTOF mass spectrometry”, J. Mass Spectrom. (2021)56:e4786, DOI: 10.1002/jms.4786
- A.A.J. Wei et al., “Different Oligomeric States of the Tumor Suppressor p53 Show Identical Binding Behavior towards the S100β Homodimer”, ChemBioChem (2022), 23(11); https://doi.org/10.1002/cbic.202100665
- C. Arlt et al., “Native mass spectrometry identifes the HybG chaperone as carrier of the Fe(CN)2CO group during maturation of E. coli [NiFe]‑hydrogenase 2”, Nature Scientifc Reports (2021) 11:24362; | https://doi.org/10.1038/s41598-021-03900-w
- G. Dal Cortivo et al., “Oligomeric state, hydrodynamic
properties and target recognition of human Calcium and Integrin Binding protein 2 (CIB2)”. Nature Scientifc Reports (2019) 9:15058; https://doi.org/10.1038/s41598-019-51573-3 - A. Haase et al., “Evidence the Isc iron–sulfur cluster biogenesis machinery is the source of iron for [NiFe]‑cofactor biosynthesis in Escherichia coli”, Nature Scientifc Reports (2024) 14:3026; https://doi.org/10.1038/s41598-024-53745-2
High Mass LCT
- C.P. Cerrato et al., “Monitoring Disassembly and Cargo Release of Phase-Separated Peptide Coacervates with Native Mass Spectrometry”, Anal. Chem. (2023), 95, 10869−10872; Supplemental information
- M. Kaldmäe et al., “A strategy for the identification or protein architectures directly from ion mobility mass spectrometry data reveals stabilizing subunit interactionsin light harvesting complexes”, Prot. Sci. (2019)28:1024-30, DOI: 10.1002/pro.3609
- A. Suades et al., “Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system”, Nature Communications ( 2023) 14:4070; https://doi.org/10.1038/s41467-023-39711-y
- A. Leppert et al., “Liquid–Liquid Phase Separation Primes Spider Silk Proteins for Fiber Formation via a Conditional Sticker Domain”, Nano Lett. (2023), 23, 12, 5836–5841; https://doi.org/10.1021/acs.nanolett.3c00773; Supplemental information
NativeSynapt
- P. Lill et al., “Towards the molecular architecture of the peroxisomal receptor docking complex”, Proc. Natl. Acad. Sci. USA (2020), DOI: 10.1073/pnas.2009502117
- F. Drepper et al., “A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications”, J. Biol. Chem. (2020), DOI: 10.1074/jbc.RA120.015882
- M. Saluri et al., “A “grappling hook” interaction connects self-assembly and chaperone activity of Nucleophosmin 1”, https://doi.org/10.1093/pnasnexus/pgac303; Supplemental information
- C. Sahin et al., “Mass Spectrometry of RNA-Binding Proteins during Liquid−Liquid Phase Separation Reveals Distinct Assembly Mechanisms and Droplet Architectures”, J. Am. Chem. Soc. 2023, 145, 10659−10668; https://doi.org/10.1021/jacs.3c00932; Supplemental information
- D. Lama et al., “A druggable conformational switch in the c-MYC transactivation domain”, Nature Communications ( 2024) 15:1865; https://doi.org/10.1038/s41467-024-45826-7
- L.J. Persson et al., “High-Performance Molecular Dynamics Simulations for Native Mass Spectrometry of Large Protein Complexes with the Fast Multipole Method”, Analytical Chemistry ( 2024) 96, 15023-15030; https://doi.org/10.1038/s41467-024-45826-7
- F.M. Dijkema et al., “A suicidal and extensively disordered luciferase with a bright luminescence”, Protein Science ( 2024); https://doi.org/10.1038/s41467-024-45826-7
- S. Nishio et al., “ZP2 cleavage blocks polyspermy by modulating the architecture of the egg coat”, Cell (2024), 187, 1440-1459; https://doi.org/10.1038/s41467-024-45826-7
- M.L. Abramsson et al., “Engineering cardiolipin binding to an artificial membrane protein reveals
determinants for lipid-mediated stabilization”, Preprint on bioRxiv, https://doi.org/10.1101/2024.05.27.592301 - A. Haase, C. Arlt, A. Sinz, R.G. Sawer, “Evidence the Isc iron–sulfur cluster biogenesis machinery is the source of iron for [NiFe]‑cofactor biosynthesis in Escherichia coli”, Nature Scientific Reports (2024) 14:3026; https://doi.org/10.1038/s41598-024-53745-2
Your paper is not listed despite you used an MS Vision-modified native MS system? Let us know about your work!